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This is a study of the degree of weak convergence under convexity of a sequence
of finite measures {f,},.» on R* k=1, to the unit measure J,. Let Q denote a
convex and compact subset of R*, let fe C"'(Q), m > 0, satisfy a convexity condition
and let y be a finite measure on Q. Using standard moment methods, upper bounds
and best upper bounds are obtained for |ijdu —f(xp)|. They sometimes lead to
sharp inequalities which are attained for particular u and f. These estimates are bet-
ter than the corresponding ones found in the literature. ¢ 1987 Academic Press. Inc.

1. INTRODUCTION

The flavor of this paper is conveyd by Proposition 1. It claims the
equivalence of the weak convergence of a sequence of finite measures
{1} jen on [a,hTc R to the unit (Dirac) measure J,,. where x, € (q, b),
with the convergence of jfduj to f(x,), where fe C"([a, b]) for some
m >0 1is such that | f"(¢) — f""(x,)| is convex in ¢. For this restricted class
of functions f we prove quantitative estimates on the above weak
convergence.

The main results are Theorems 3, 7 and the multidimensional Theorem
17.

The inequalities established are usually the best possible and are stronger
than the corresponding ones obtained from Shisha and Mond [17], Mond
and Vasudevan [15], Gonska [7], Anastassiou [ 1] and others.

Our work is related to the convergence of linear positive operators since,
by Riesz’s representation theorem, the pointwise convergence of a sequence
of linear positive operators {L,}, ., to the unit operator I acting on
C({a, b]), 1s equivalent to the weak convergence of a sequence of finite
measures {u;},. to the unit (Dirac) measure at the given point.
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2. PRELIMINARIES
We start with

PROPOSITION 1. Let m be an integer = 1. Let {u,}, . be a sequence of
measures on [a, b] < R with corresponding masses m,;: 0 <m, <t and ¢, the
unit (Dirac) measure at xy€ (a, b). Then the following are equivalent:

(1) u, 390, Oreakly);
(i) [ fdu,—f(xo) for all fe C™([a, h])
such that | (1) — " Nx,)| is convex in t.

Proof. (i)=- (i1} Obvious [6, p.316]. In fact (i) implies j1_f‘dy/—>_/'(A\'(,)
for all fe C([a, b]).

(ii)=(i) The set of functions {1, (r—x,), (f—x,)”} is a subset of
C™([a, b]) and for each of them | f""(¢t) —f"(x,)| is a convex function
of 1.

Therefore. by assumption, for the positive linear functionals
Lif)= .{fd#/ we have L/ f) - f(x,) for any fe L (=), (1~ -\’0)2}~

Since this triplet of functions is a Chebyshev system, by Korovkin's
theorem for positive linear functionals [12], we get [ fdu,— f(x,) for all
fe C(la. b]). This implies y; 3 & (weakly); see [6]. |

X0

The following result plays an important role in the proofs of this paper.

LEMMA 2. Let (V, || -I) be a real normed vector space and U a star-
shaped subset of 'V with respect to xy€ U. Let w, h be positive numbers such
thatr h <[t — x| for each extreme point t £ x, of U. Consider a convex
f:U - R such that f(xy)=0 and

) —fnlsw i lx—yl<h xyel. (2.1)
Then the maximal function satisfving the above conditions is

}

v
(/)(’):Z“’“»Y()H-, tel,

so that

FGEY 13 for all teU.

Note. If U is convex, then in the lemma we require that the ball
Bl(x,, hyc U.

Proof. The function ¢ fulfills all the assumptions of the lemma. Namely,
#(xy) =0 and for x,ye U with [[x — vi{| <h, we have [¢(x)— ¢( )] <w. Also,
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one easily sees that ¢ is convex. Next, for reU-— {x,} satisfying
It — x,ll <h, consider x e U such that

h— 11— x| I — x|
f:<.~7~9. rr el

Then |x — x| = A. Since [ is convex and f(x,) =0, we have

1) :f<</1*_lfhj__\_o_“_> Yo+ ”f—h.\‘()H x> < s —h.\'o Hf(\)

and therefore f (1) < (It — x,ll/h) f(x). Thus

i< g g <2l
! h

SO

. 11— xl
'f(z)é—h—— W when |t — x| <h (

b2
[ ]

Now for e U such that |z — x,|| >/, there is a finite sequence of points
Xi.wn X, on the line segment rx, such that all of {x,— x|, {x;— x,l.
[ = x5l [l — ] are <A and {xg—x [+l = xof + -+ e, — 1] =
|t—x,|. Furthermore, the function F(1)=f(r)— f(x,) is convex, F(x,)=0
and fulfills (2.1). Since [t—x,|<h, by (2.2) we get f(r)—f(y))<
(it —x|I/h) w; similarly

e = fe <

Jx)=1(x) ;

N

Adding up all these inequalities, we find f(7)<(lir— x,[l/#)w when
it — x,i > h. The proof is now complete. |

3. ONE DIMENSIONAL RESULTS

THEOREM 3. Let r>0, p a finite measure of mass m on an interval
la, b}, xoel{a. b). Set ¢c(xy)=max(x,—a, b—x,) and

~ tr
<| 11— x| u(dr)) =d,(x,). (3.1)

and assume d(x,)>0. In order thar p exist, we also assume that

0405144



336 GEORGE A. ANASTASSIOU

di(xgy<m-(c(xy)). Next consider {[a, b] — R for which | f(t)—f(x,)] is
convex in t and

| f(s)—f() <w when s, te[a,b]; |s —t| <A (3.2)

Here O <h<min(xy—a, b— x,) and w> 0 are fixed.
A best upper bound is given by
d‘ X
womt! ""('(—\0)>, rzl,
h

—m—1] -] flxo)l < (3.3)

o dix)

‘ [ 7= (xo)

w(c(xg))

Remark 4. When m=1, {3.3) imphes

" <M> rzk,
h

< (4.1)

et~
h

U./'dﬂ —flxg)

If w=uw,(f, h) the modulus of continuity of fin [a, b], and r2=1, (4.1)
becomes

<, (fh) %) “0) (4.2)

‘J Jdu—7(xy)

which in case d,(x,)={-h, {= 1, turns out to be

IJ’-.f'd[u —flxo)

</, (f ; . d,,(x())). (4.3)

Note that inequality (4.2) is sharp when r = [, namely, equality is attained
by f(t)=|t— x,| where both of sides are d,(x,).

COROLLARY 5. For m=1 and h=d,(x,) <min(x,—a, b — x,) we have

deu —f(xo)| S0 f: dafxo)). (5.1)

This is also true for fe CgR) (the space of real, bounded, continuous
Sfunctions on (—oc, o0)) when h=d,(x,) < oo.

Proof. Obvious from (4.2). |
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Proof of Theorem 3. Let g(1)=f(1)—f(x,). From Lemma 2 we have

w
(0l < 11— Xol.

Thus

deu —/(xo)

=Ugdu+(m- 1)/ (xo)

gj | gl du+|m—1]-1f(xo)l,

Le.,

[ =1tz

<lm—11-1f (o)l 4 [ 1= xol ldr). (34)

Here, equality holds for f(#) = (w/h) |t — x,| which fulfills the assumptions
of the theorem.
The best constant 0 in (3.4) is given by

():supJ11~x0| uldt),
1

where u ranges over all measures on [a, ] of mass m satisfying (3.1).
Letting y =m ~'u we determine

U=sup | 11— x| 3(dr),
where y ranges over all probability measures on [a, b] satisfying
j|’ = Xol" - y(dry=d/(xy)/m.

Note that 0 < |1 — x,| < e(xy) =max(x, —a, b— x,). Taking the probability
measure p induced by y and the mapping ¢— |t—x,| and denoting
u=|t—x,l, we seek

U:supjup(du) O<u<c(xy)
I
over all probability measures p such that

[ - p(du) = d(x)/m.

v
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It follows (see [ 10, 11]) that
= p(d(xo)/m),
where
Iy={{z,9(2)): 0< z<e"(x0)}
is the upper boundary of the convex hull of the curve
Fo={(u, u):0<u<e(xg)).
When r> 1, I, is concave and
U=d(x,)/m""
while, when r< 1, Iy is convex and

d;(xo)

m

U=

(C(»\'()))l "
As a result we get the best upper bound

[rdurix

w
<lm 111 (xo)| 0.

which completes the proof of the theorem. |

An application of Corollary 5 is

COROLLARY 6. Let fe Cgl0, av) be such that | f(1)— f(xy)] is a convex
Sfunction of t for a fixed x,=1. Consider the Szdsz—Mirakjan operator
applied to f at x:

£ v k
(U, Nlxg)=e " Y _f‘<~/i> %)

Then

[(U, ) xo) =11 Y())|<w1<,/‘; <%> W)-

Proof. Consider (X)), ., Poisson (i1d.) random variables with
parameter x, =1, so that E(X)=Var(X)=x, Put §,=3"_, X, n=1;
then E(S,/n)=x, and Var(S,/n)= x,/n. Note that \/X(W<.\(), SO we can
apply inequality (5.1) for u= F . the distribution function of S, /n. |
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For differentiable functions we have

TaeOREM 7. Let r>0, i a finite measure on [a, b] <R, x,e(a, b) and
c(xo)=max(x,—a, b—x,). Put

cpr(xy) = J (f—x4)" pldt), k=0, 1,., n

dlxy)= <J [t —xyl" df)) ’r-

Lot fe C™a, b], n= 1, and assume | [7(t) — " (xy)| is convex in t and

| FUs)— £ <w if's,te[a,b] and |s—1| <h. (7.2)

Here 0 <h <min(x,—a, b — xy) and w>0 are fixed.

Then
_ n }f(k)(“\,
o { [ rau=rte) =17t =11 ¥ L e
k1 :
W—i‘lvd:fﬂ('\’”)c()(-‘fn)l (e n, rzan+l
s (7.3)
w
m d:j(_\(()’)((,'(,\fﬂ))(” ML r<n+1.

Note. When r=n+ 1 and w=w,(/", h),

o (f"h)
E(x,) < —/m di 7 1(xg), (74)

which, for h=d"" !(x,)/(n + 1)!, becomes

nto

E(xo) <o, (f‘”’ (7.5)

dﬁill(\'o)
(n+1) /)"

Inequality (7.4) is sharp; equality is attained by the function

(1 —xo)""!
Fiy={ el

0, a< <Xy,

Xy <t < h,

k)
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when b — x, = x,— «, and by the function
(.\'() - ’)n 41
7(1): (n+1)!

0, No<L 1< h,

a<I<x,,

when b—x, < vy —a

In the flrst case an optimal measure y . is of mass ¢,(x,), supported by
{xy, b} and in the second case it is of the same mass c¢y(x,), supported
by {x.al. In both cases the corresponding masses are [c,(x,)—
(d, 1 (xo)elxg))" " '] and (d, , (xo)elxg))' .

Remark 8. When r=n and w=w (["", h), inequality (7.3) becomes

E«mg%%’;ﬂdw,) (xo)
_ (/" h) (d”(v\'()))‘ (c(xo))" " . (8.0)
h cxg))  (n+1)
This is also sharp and equality is attained as in (7.4).
Proof of Theorem 7.
= 38 (7.6)

k!

k=0

where

n=f (0

Xg X0

(1" s a, ) Jai,.

By Lemma 2,

ey gy <1 v
L) —f (»\o)|\h |t — Xl

Wt —xy" "
| <5
h (n+1)!
From (7.6), integrating relative to u, we get
L/ %)l

< | flxg)l - feglxg) — 1+ Z Jeg(xo)]

k=1

( [ £dr=rixo)

Ok

W

[ — nt b
+m}" Xl ddr).
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We would like to find
0 =sup 11— x| ! u(ar)
H

over all measures p on [a, b] of mass ¢y(x,) with ([ |1 —xo|" u(dt))'" =
d{x4), when d,(xy)>0.
Equivalently, we want

U:SUPJ [t —xo|" " 3(dt) (0 =cylxy) U)

over all probability measures y =m ~' i such that

[t =gl (dr) = ditxo)eolxo).

Note that 0<|t—x,|<c(xo)=max{x,—a, b—x,). Let p be the
probability measure induced by y and the mapping -» |t — x,| and let
u=|t—x,|; we want to find

U:supju””p(du} (0 < u<e(xy)),

o

where p runs over all probability measures on [0, ¢(x,)] such that

| plei) = difxa)ieotxo)

From [ 10, 117 it foliows that
U=y(d.(xy)/colxo)),

where {(z, ¥(z)): 0<z<¢"(x,)} is the upper boundary of the convex hull
of the curve

Go={(u,u"""): 0<u<c(xy)}.
When r=zn+1, G, is concave and
U=di*xo)/(colx)" 1,
while, when r <n+ I, G, is convex and

_ d,(x0)

U= (el
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Note that, for r=n+ 1, we find
U= j::jl(’(o)/‘o(\o)

Thus we get the upper bound

\f‘“ o)l
| Sx)] - leolxg) = 1] + z Jeglxg)l

[

{' fdu—f(xy)

W

— .
+/l(77+ Iy

This completes the proof of the theorem. J

COROLLARY 9. Let  x,e(ab) and feC'(fa,b]) be such that
L(1)—f'(x,)| is a convex function of t. Let u be a probability measure on
La, b] for which | t u(dt)=x, and

R

(! (1—x,)° ,u(dr)) =d,(x4) > 0.
I d5(x) <2 min(xy — a,b — xy), we get the sharp (attained) inequality

il}‘a’u~/‘(\‘) <o, f S d3(xy)) (9.1)

And if ds(xy) €2min(xy —a, b~ x,), we obtain the sharp inequality:

U./fd/l —flxo)| S, (f", % dy(xg)) dalxo)- (9.2)

COROLLARY 10.  Ler the random variable X have distribution u,
E(X)=x, and Var(X)=o"< x. Consider those feCYR) for which
Ef(Xy< > and i f'(t)y—1"(xy) is convex in t. Then we have the sharp
inequality (attained by f(t)= (1 — x4)°):

VEF(X) — f(x,)] <min {w,(/”,—?),(u,(/”,%) O’}. (10.1)

/

The next result will be used 1n Theorem 12.

LemMa 11 Ler xpe(a, b)Y R, and let ¢ (xq) and cofxy) >0, di(xy) >0
be given numbers. Considel all measures poon [a, b of mass cy(xy) such that
[ = xo) pldey=¢y(x0), [l xol wldt)y =d(x,). Put

et — x 2
U(xy)=sup ‘ L—(—L(%— nlde).

w ¢ ColXy
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Then

(11.1)

Utra) = (5 ) (LAY (g (L1l

2co(x) 2¢0(x0)
An optimal measure is supported by {a, x,, b}.
Proof. Easy. |

Inequality (7.3) can be improved if we know more about u. One result in
this direction is

THEOREM 12.  Under the hypothesis of Lemma 11, let fe C'([a.b])
with o, (f",h)<w, where w, h are given positive numbers such that
O <h<min(xy—a, b— x,). Suppose | ['(t)—f'(x,)| is a convex function of t.

Then

1 j.fdﬂ —flxo)

(X)) - leolxg) = H A+ Lf (xo)l - [e4(x0)]
(12.1)
+2hc(,(x0) Xy )-

This inequality gives a best upper bound.

Inequality (12.1) 1is sharp, namely, it is attained when cy(x,)=1,
c(xg) =0, w,(f", h)=w, f(1)= (1 — x4)*/2 and p is the probability measure
supported by {a, x,, b} with masses

d,(x,) [1_ di(xo) di(xg) :| di(x)
2 72

2Axo—a)’ (xo—a) 2(b—x0)] 2(h—x,)’

respectively.
Proof. Easy. ||

Note. When n=r=1, inequality (12.1) is better than the corresponding
inequality (7.3).
An application to Corollary 9 is

CoroLLARY 13. Let fe C'([0,1]) be such that |f'(t)—[f'(x,)| is a
convex function of t, let x,€ (0, 1) and consider the nth Bernstein operator

applied 1o f at xo: (B, f)(xo) =% _o f(k/n)(}) x§(1 — x0)" . Then
(1) [(B,.f ) (xo) —f(xo)l

<w1<f’,x°(lz+r°)><wl<f’,§1’;>, (13.1)

640./51:4-5
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(i) [(B,fHxo)—f(xoH
<o, </-,’ l \/,\’0(1 _'\"o)) \/Xo(l — Xg)
2 n R
. I 1 1 4
<(1)1<./ ,4V/;>m, )C()Elig,gjl. (132)

Proof. (i) Let (X)), be Bernoulli (i.i.d.) random variables such that
P(X,=0)=1—-x,, P(X,=1)=x,; then E(X)=x,, Var(X}=x,(l—x,)
Put S,=%"_| X;,n> 1, then E(S,/n)=x, and Var(S,/n) = x,(1 —x,)/n <
2 min(x,, | — x,). Now apply inequality (9.1) to u= Fy ,,, the distribution
function of S,/n. Further, note that max,._, . (xy(1—xy))=4 being
attained at x,=1.

(ii) Proved similarly. |}

An application to Corollary 10 is

COROLLARY 14. Let [ be a real function, bounded and having a con-
tinuous bounded derivative on (— oo, oo) and let | f'(t) — f'(x)] be a convex
function of t for some fixed x,€ R. Consider the nth Weierstrass operator
applied to f at x,:

—

(W, Hx,) = V/"ﬂn/'ﬂJ Flx)e " gy,

s

Then

X o . 1 , l 1
[(W,/)(xo) —f(x0)| <min {U)l </ , E)’ W) <.f/’ 2V—/—2_”> ﬁ} . (14.1)

Proof. As that of Corollary 13. Here the random variable X has the
normal distribution (x,, %) with density (1/\/;)(’ tv X Then apply
inequality (10.1). |}

Remark 15. In Theorems 3, 7 and related results, when x,=0 and
h<min(|al|, b), we can use instead of w,

([)I(./‘lm)vh) — sup{ lf“”’(x) /f(””( }")|: xX-y > 0 and f)( —,V! < h }

<, (f" h), for and integer m = 0.
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4. MULTIDIMENSIONAL RESULTS

DErFINITION 16, For / a continuous real valued function on a compact
subset Q of R*, k> 1, its modulus of continuity is

o (f,)y=supl{lf(x)—f(y)l:all x, yeQ, |Ix—yi<h},

where ||-|| is a norm in R".

THEOREM 17. Let Q be a compact and convex subset of R*, k=1, let
Xy = (Xgp5 s Xox) € Q be fixed and let p be a probability measure on Q. Let
fe Q) n=1, and suppose that euch nth partial derivative f,= *f/éx*,
where o= (00, ., ;) 2,20, i=1, .., k, and |o| =X %_, o;=n has, relative to
Q and the [-norm, a modulus 0/ continuity o, (f, ,h <w, and each
LX) —[(xo)| is a convex function of x. Here h and w are given positive
numbers, and h is chosen so that the ball in R*: B(x,, h) is contained in Q.
Then

n

l .
Y 3] 80 uax)

j=1J"

lffw—ﬂ%)s
Q

W

—P y— oy, |t ix). 171
+/1()1+1)!,|Q X —xq | u(dx) ( )

where g (1) =/1(xy+ HX—X,)), 1 =0,

Proof.
] gl/())
_/(:,,...,:k):gl(]):z ;“+R(z 0), {(17.2)
j=0 J-
where
I3 (“ / )
g/(1)= |:< Z (z,~xo) ;7) / ] (X, + 1z = X1 )y e X + 125 — X))
f=1 e
(17.3)

is the jth derivative of g,(1)=f(x,+ t{z—x,)) and

waar= [ ([ wrr-eriona). o

By Lemma 2 we get

L o(Xo 4tz — X)) — [ (Xo)] < T’HZ Xolls all 120.
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It follows from (17.3) that

}R”(X,O”
SN e n! H/'\'ﬂl ‘~1 \Oll ) jl }
< i= —Xoll 1, )-dt, |- |-dt
J() [Jo l:JO <XZ” oyt / H Xoll ¢ dr,
W Iz — Xol/" ™
T h (n+ 1)
Therefore
w ”z_xonn+l
Oy gm0 for all . 174
Rl O <G =y foralize@ .

Note g,(0) =f(x,). Integrating (17.2) relative to p and using (17.4), (17.1)
follows. §

Remark 18. Let n be even and let Q be the closed line segment in R*
(k>=1) joining

(—1, ~1,. —1)  to (1, 1,.,1)

Let x,=0, let 0<h<1 and take w=max{w,(f,, ) all » such that
x| =nt. For f(x)=|x|"""/(n+ 1), ||-]| the /, norm in R* equality is
attained in (17.1).

Namely, all f,(x)=|x| are convex functions so that w,(f,, h)=Ah and
giM0)y=0forall 0gj<n

Hlustration 19. (i) For Q = {xe R*: |x|, <1} we have

" 1 ~
< Z /—YJ g(0) u(dx)

e 19.1
w L+ fixl) o

h (n+1)!

l JﬂQfdﬂ =/ (xq)

where h is such that B(xq, )< Q.
(i) For Q= {xeR" —i<x,<i i=1.,k} i>0, we get

=/ (Xg) } Z j D(0) uldx)
- (19.2)
w(|xol +kA)"H!

h (1))

where || -1 is the /, norm in R* and B(x,, h)c Q.
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CorOLLARY 20. Let the random vector (X, , ..., X;) take values in a con-
vex subset Q of R, with distribution function y and expectations E(X,) = x,,
i=1,.,k. Thus Xq=(Xg1rs Xor) IS a fixed point of Q. Further, put
(J IIx = xo 1> u(dx))'"*> =0, where. ||| denotes the I, norm in R*. Let [ have
continuous first order partial derivatives on Q, let [ and these derivatives be
bounded on Q and let | fi(X) — f{Xy)| be a convex function of X for i=1, .., k,
where f, is the ith first partial derivative of f. For h >0 set

wF(f, ) =max{w(f, hyi=1,..k}

If h=0"/2 and B(x,.0%/2) < Q, then

2
[ rde-sixo| <ot (1.5). 201)
0
If h=0/2 and B(x,, 0/2)yc Q, then
-y . . g
J Sdp—f(xy) <(U1*<.f,s_> c. (20.2)
0 2

Proof.  Apply Theorem 17 with n=1 and w=w¥(/., h). |}

Remark 21.  Let r, C(x,), D,(X,) be given positive numbers. Assume the
convex and compact set Q lies in the ball 0 < [x — x4, < C(x,) and that
the probability measure u on Q satisfies (f|x — x|} - u(dx))'" = D,(x,).
Then, using standard moment methods, we find that the remainder term on
the right-hand side of (17.1) is <(w/h(n+ 1)) D'+ '(xy) if r=n+1,
and < (w/h(n+ 1)) DI(x N Clx )"+ " 7 if r<n+ 1. Thus we have
generalized (7.3) to higher dimension.

As a further result we have

PROPOSITION 22. Take Q a convex and compact subset of R*, let
Xo=(Xg1» - Yor )€ Q be fixed and let p be a probability measure on Q. Let
e C(Q), | f(x)—f(xg)| being a convex function of xX. Assume [ has, relative
to Q and a norm ||-|| in R¥, a modulus of continuity for which w,(f,h)<w.
Here h, w are given positive numbers such that the ball B(x,, h) < Q. Then

(f X =Xl (dX> (22.1)

This inequality is sharp; equality is attained by f(x)=|x—x,| when
=w,(f,h).

{J/@ 7(xo)

Proof. Obvious, using Lemma 2. |
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Remark 23.  Assume the first two sentences of Remark 21, except that

instead of |||, take any norm in R*. Then, using standard moment
methods, we obtain a best upper bound:

[UEE 9

W

T Dr(x())‘ lf r
h

S (23.1)
W . C )
—ED:‘(X())(((X(J)) \ if r<1.

\Y%

|~ Jdp—f(xg)
Jo

This is a generalization of inequality (3.3).
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